3.778 \(\int \frac {(d+e x)^m (a d e+(c d^2+a e^2) x+c d e x^2)^{-m}}{(f+g x)^{3/2}} \, dx\)

Optimal. Leaf size=103 \[ -\frac {2 (d+e x)^m \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{-m} \left (-\frac {g (a e+c d x)}{c d f-a e g}\right )^m \, _2F_1\left (-\frac {1}{2},m;\frac {1}{2};\frac {c d (f+g x)}{c d f-a e g}\right )}{g \sqrt {f+g x}} \]

[Out]

-2*(-g*(c*d*x+a*e)/(-a*e*g+c*d*f))^m*(e*x+d)^m*hypergeom([-1/2, m],[1/2],c*d*(g*x+f)/(-a*e*g+c*d*f))/g/((a*d*e
+(a*e^2+c*d^2)*x+c*d*e*x^2)^m)/(g*x+f)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {891, 70, 69} \[ -\frac {2 (d+e x)^m \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{-m} \left (-\frac {g (a e+c d x)}{c d f-a e g}\right )^m \, _2F_1\left (-\frac {1}{2},m;\frac {1}{2};\frac {c d (f+g x)}{c d f-a e g}\right )}{g \sqrt {f+g x}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^m/((f + g*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^m),x]

[Out]

(-2*(-((g*(a*e + c*d*x))/(c*d*f - a*e*g)))^m*(d + e*x)^m*Hypergeometric2F1[-1/2, m, 1/2, (c*d*(f + g*x))/(c*d*
f - a*e*g)])/(g*Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^m)

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 891

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Dist[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*
(f + g*x)^n*(a/d + (c*x)/e)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2
 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^m \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{-m}}{(f+g x)^{3/2}} \, dx &=\left ((a e+c d x)^m (d+e x)^m \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{-m}\right ) \int \frac {(a e+c d x)^{-m}}{(f+g x)^{3/2}} \, dx\\ &=\left (\left (\frac {g (a e+c d x)}{-c d f+a e g}\right )^m (d+e x)^m \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{-m}\right ) \int \frac {\left (-\frac {a e g}{c d f-a e g}-\frac {c d g x}{c d f-a e g}\right )^{-m}}{(f+g x)^{3/2}} \, dx\\ &=-\frac {2 \left (-\frac {g (a e+c d x)}{c d f-a e g}\right )^m (d+e x)^m \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{-m} \, _2F_1\left (-\frac {1}{2},m;\frac {1}{2};\frac {c d (f+g x)}{c d f-a e g}\right )}{g \sqrt {f+g x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 91, normalized size = 0.88 \[ -\frac {2 (d+e x)^m ((d+e x) (a e+c d x))^{-m} \left (\frac {g (a e+c d x)}{a e g-c d f}\right )^m \, _2F_1\left (-\frac {1}{2},m;\frac {1}{2};\frac {c d (f+g x)}{c d f-a e g}\right )}{g \sqrt {f+g x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^m/((f + g*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^m),x]

[Out]

(-2*((g*(a*e + c*d*x))/(-(c*d*f) + a*e*g))^m*(d + e*x)^m*Hypergeometric2F1[-1/2, m, 1/2, (c*d*(f + g*x))/(c*d*
f - a*e*g)])/(g*((a*e + c*d*x)*(d + e*x))^m*Sqrt[f + g*x])

________________________________________________________________________________________

fricas [F]  time = 0.84, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {g x + f} {\left (e x + d\right )}^{m}}{{\left (g^{2} x^{2} + 2 \, f g x + f^{2}\right )} {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{m}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(g*x+f)^(3/2)/((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^m),x, algorithm="fricas")

[Out]

integral(sqrt(g*x + f)*(e*x + d)^m/((g^2*x^2 + 2*f*g*x + f^2)*(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^m), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )}^{m}}{{\left (g x + f\right )}^{\frac {3}{2}} {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{m}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(g*x+f)^(3/2)/((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^m),x, algorithm="giac")

[Out]

integrate((e*x + d)^m/((g*x + f)^(3/2)*(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^m), x)

________________________________________________________________________________________

maple [F]  time = 0.11, size = 0, normalized size = 0.00 \[ \int \frac {\left (c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x \right )^{-m} \left (e x +d \right )^{m}}{\left (g x +f \right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m/(g*x+f)^(3/2)/((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^m),x)

[Out]

int((e*x+d)^m/(g*x+f)^(3/2)/((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^m),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )}^{m}}{{\left (g x + f\right )}^{\frac {3}{2}} {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{m}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(g*x+f)^(3/2)/((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^m),x, algorithm="maxima")

[Out]

integrate((e*x + d)^m/((g*x + f)^(3/2)*(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^m), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d+e\,x\right )}^m}{{\left (f+g\,x\right )}^{3/2}\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^m} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^m/((f + g*x)^(3/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^m),x)

[Out]

int((d + e*x)^m/((f + g*x)^(3/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^m), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m/(g*x+f)**(3/2)/((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**m),x)

[Out]

Timed out

________________________________________________________________________________________